首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   39篇
  2021年   8篇
  2019年   3篇
  2018年   6篇
  2017年   3篇
  2016年   14篇
  2015年   12篇
  2014年   18篇
  2013年   33篇
  2012年   34篇
  2011年   27篇
  2010年   15篇
  2009年   17篇
  2008年   23篇
  2007年   25篇
  2006年   25篇
  2005年   32篇
  2004年   26篇
  2003年   37篇
  2002年   30篇
  2001年   26篇
  2000年   29篇
  1999年   17篇
  1998年   8篇
  1997年   10篇
  1996年   3篇
  1995年   7篇
  1994年   10篇
  1993年   6篇
  1992年   17篇
  1991年   14篇
  1990年   8篇
  1989年   10篇
  1988年   11篇
  1987年   4篇
  1986年   5篇
  1985年   8篇
  1983年   9篇
  1982年   3篇
  1980年   6篇
  1979年   7篇
  1978年   7篇
  1975年   6篇
  1974年   3篇
  1973年   3篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
  1967年   3篇
  1965年   4篇
排序方式: 共有659条查询结果,搜索用时 31 毫秒
11.
Fibroblast growth factor-2 (FGF-2) enhances the formation of new alveolar bone, cementum, and periodontal ligament (PDL) in periodontal defect models. However, the mechanism through which FGF-2 acts in periodontal regeneration in vivo has not been fully clarified yet. To reveal the action mechanism, the formation of regenerated tissue and gene expression at the early phase were analyzed in a beagle dog 3-wall periodontal defect model. FGF-2 (0.3%) or the vehicle (hydroxypropyl cellulose) only were topically applied to the defect in FGF-2 and control groups, respectively. Then, the amount of regenerated tissues and the number of proliferating cells at 3, 7, 14, and 28 days and the number of blood vessels at 7 days were quantitated histologically. Additionally, the expression of osteogenic genes in the regenerated tissue was evaluated by real-time PCR at 7 and 14 days. Compared with the control, cell proliferation around the existing bone and PDL, connective tissue formation on the root surface, and new bone formation in the defect at 7 days were significantly promoted by FGF-2. Additionally, the number of blood vessels at 7 days was increased by FGF-2 treatment. At 28 days, new cementum and PDL were extended by FGF-2. Moreover, FGF-2 increased the expression of bone morphogenetic protein 2 (BMP-2) and osteoblast differentiation markers (osterix, alkaline phosphatase, and osteocalcin) in the regenerated tissue. We revealed the facilitatory mechanisms of FGF-2 in periodontal regeneration in vivo. First, the proliferation of fibroblastic cells derived from bone marrow and PDL was accelerated and enhanced by FGF-2. Second, angiogenesis was enhanced by FGF-2 treatment. Finally, osteoblastic differentiation and bone formation, at least in part due to BMP-2 production, were rapidly induced by FGF-2. Therefore, these multifaceted effects of FGF-2 promote new tissue formation at the early regeneration phase, leading to enhanced formation of new bone, cementum, and PDL.  相似文献   
12.
Entamoeba histolytica, a microaerophilic protozoan parasite, possesses mitosomes. Mitosomes are mitochondrion-related organelles that have largely lost typical mitochondrial functions, such as those involved in the tricarboxylic acid cycle and oxidative phosphorylation. The biological roles of Entamoeba mitosomes have been a long-standing enigma. We previously demonstrated that sulfate activation, which is not generally compartmentalized to mitochondria, is a major function of E. histolytica mitosomes. Sulfate activation cooperates with cytosolic enzymes, i.e., sulfotransferases (SULTs), for the synthesis of sulfolipids, one of which is cholesteryl sulfate. Notably, cholesteryl sulfate plays an important role in encystation, an essential process in the Entamoeba life cycle. These findings identified a biological role for Entamoeba mitosomes; however, they simultaneously raised a new issue concerning how the reactions of the pathway, separated by the mitosomal membranes, cooperate. Here, we demonstrated that the E. histolytica mitochondrial carrier family (EhMCF) has the capacity to exchange 3′-phosphoadenosine 5′-phosphosulfate (PAPS) with ATP. We also confirmed the cytosolic localization of all the E. histolytica SULTs, suggesting that in Entamoeba, PAPS, which is produced through mitosomal sulfate activation, is translocated to the cytosol and becomes a substrate for SULTs. In contrast, ATP, which is produced through cytosolic pathways, is translocated into the mitosomes and is a necessary substrate for sulfate activation. Taking our findings collectively, we suggest that EhMCF functions as a PAPS/ATP antiporter and plays a crucial role in linking the mitosomal sulfate activation pathway to cytosolic SULTs for the production of sulfolipids.  相似文献   
13.
14.

Background  

Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont.  相似文献   
15.
Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply.  相似文献   
16.
Many of the genes that control photosynthesis are carried in the chloroplast. These genes differ among species. However, evidence has yet to be reported revealing the involvement of organelle genes in the initial stages of plant speciation. To elucidate the molecular basis of aquatic plant speciation, we focused on the unique plant species Chara braunii C. C. Gmel. that inhabits both shallow and deep freshwater habitats and exhibits habitat‐based dimorphism of chloroplast DNA (cpDNA). Here, we examined the “shallow” and “deep” subpopulations of C. braunii using two nuclear DNA (nDNA) markers and cpDNA. Genetic differentiation between the two subpopulations was measured in both nDNA and cpDNA regions, although phylogenetic analyses suggested nuclear gene flow between subpopulations. Neutrality tests based on Tajima’s D demonstrated diversifying selection acting on organelle DNA regions. Furthermore, both “shallow” and “deep” haplotypes of cpDNA detected in cultures originating from bottom soils of three deep environments suggested that migration of oospores (dormant zygotes) between the two habitats occurs irrespective of the complete habitat‐based dimorphism of cpDNA from field‐collected vegetative thalli. Therefore, the two subpopulations are highly selected by their different aquatic habitats and show prezygotic isolation, which represents an initial process of speciation affected by ecologically based divergent selection of organelle genes.  相似文献   
17.
Somatic cellular differentiation plays a critical role in the transition from unicellular to multicellular life, but the evolution of its genetic basis remains poorly understood. By definition, somatic cells do not reproduce to pass on genes and so constitute an extreme form of altruistic behaviour. The volvocine green algae provide an excellent model system to study the evolution of multicellularity and somatic differentiation. In Volvox carteri, somatic cell differentiation is controlled by the regA gene, which is part of a tandem duplication of genes known as the reg cluster. Although previous work found the reg cluster in divergent Volvox species, its origin and distribution in the broader group of volvocine algae has not been known. Here, we show that the reg cluster is present in many species without somatic cells and determine that the genetic basis for soma arose before the phenotype at the origin of the family Volvocaceae approximately 200 million years ago. We hypothesize that the ancestral function was involved in regulating reproduction in response to stress and that this function was later co‐opted to produce soma. Determining that the reg cluster was co‐opted to control somatic cell development provides insight into how cellular differentiation, and with it greater levels of complexity and individuality, evolves.  相似文献   
18.
The semi-pilot scale of continuous flow type hydrothermal reactor has been investigated to separate hemicellulose fraction from corncob. We obtained the effective recovery of hemicellulose using tubular type reactor at 200 °C for 10 min. From constituent sugar analysis of corncob, 82.2% of xylan fraction was recovered as mixture of xylose, xylooligosaccharides and higher-xylooligosaccharide which has more than DP 10. During purification of solubilized fraction by hydrothermal reaction such as ultrafiltration and ion exchange resin, higher-xylooligosaccharide was recovered as the precipitate. This precipitate was identified as non-blanched xylan fraction which has from DP 11 to DP 21 mainly. In this system, only a small amount of furfural has been generated. This tubular reactor has a characteristic controllability of thermal history, and seems to be effective for sugar recovery from soft biomass like corncob.  相似文献   
19.
To understand the characteristics of the ecosystem in Japanese lowland marsh, we investigated chlorophyll-a (Chl. a), photosynthesis and respiration of a phytoplankton community in a brownish-colored pond in Naka-ikemi marsh, Tsuruga, Fukui Prefecture. Chl. a concentrations and volumetric gross primary production rates ranged between 1.3–57.0 μg Chl. a l−1 and 148–1619 μg C l−1 day−1 during the study period. Higher values of Chl. a and primary production rates were clearly observed from June to September, when the dominant algae were the phytoflagellates, Peridinium (Dinophyceae) and Cryptomonas (Cryptophyceae), with swimming ability. The trophic status of the pond water of Naka-ikemi marsh was defined as being in eutrophic condition based on the biomass and productivity of phytoplankton. However, depths of Z 1% showing the productive layer in this study site were relatively narrower than those observed in the hyper-eutrophic Lake Suwa with frequent cyanobacterial water bloom. Factor-attenuating underwater light intensity in Naka-ikemi marsh was presumed to be colored dissolved organic matter. Thus, not only phytoplankton primary production, but also allochthonous organic matter supplied from the catchment area seems to be the dominant factor in the whole energy budget of the pond. In conclusion, we regarded the pond ecosystem in Naka-ikemi marsh to be in a eutrophic–dystrophic condition.  相似文献   
20.
Gonium pectorale O. F. Müll. (Volvocales, Chlorophyta), a colonial 8‐ or 16‐cellular alga, is phylogenetically important as an intermediate form between isogametic unicellular Chlamydomonas and oogamous Volvox. We identified the mating‐type specific gene GpMTD1, from G. pectorale, the first homologue of Chlamydomonas reinhardtii MTD1 (CrMTD1). The GpMTD1 gene was found to be present only in the minus mating‐type locus and was expressed specifically in the gametic phase as is the case for CrMTD1, suggested to participate in development of the minus gametes. This gene is useful as a probe in analyzing the bacterial artificial chromosome (BAC) library for resolving genomic structures of the mating‐type loci in isogamous and oogamous colonial volvocaleans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号